a2 United States Patent

Patil

US009483367B1

US 9,483,367 B1
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

DATA RECOVERY IN DISTRIBUTED
STORAGE ENVIRONMENTS

Applicant: Symantec Corporation, Mountain

View, CA (US)
Inventor: Ram Chandra Patil, Maharashtra (IN)
Assignee: Veritas Technologies LL.C, Mountain
View, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 130 days.

Appl. No.: 14/317,645

Filed: Jun. 27, 2014

Int. CI.

GO6F 11/00 (2006.01)

GO6F 11/14 (2006.01)

GO6F 11/07 (2006.01)

U.S. CL

CPC ... GOG6F 11/1469 (2013.01); GOGF 11/0709

(2013.01); GOGF 11/1402 (2013.01); GO6F
11/1464 (2013.01)

Field of Classification Search

CPC ... GOGF 11/1469; GOGF 11/1464; GO6F
11/0709; GOGF 11/1402; GOGF 11/1458
USPC oo 714/4.21, 6.2, 4.1, 4.11, 42, 43

See application file for complete search history.

Distributed Storage Cluster 100A \'

(56) References Cited

U.S. PATENT DOCUMENTS

7,831,861 B1* 112010 Greene GO6F 11/1469

707/685

8,010,829 B1* 82011 Chatterjee GO6F 11/2061
714/4.11

8,260,840 B1* 9/2012 Sirota GOG6F 9/5061
370/216

8,266,474 B2* 9/2012 Goel ..o GO6F 11/07
709/224

8,307,239 B1* 112012 Keith, Jr. ... GO6F 11/1456
714/2

2006/0047997 Al* 3/2006 Anderson ... GO6F 11/1471
714/4.1

2010/0011178 Al* 1/2010 Feathergill GO6F 11/1466
711/162

* cited by examiner

Primary Examiner — Joseph D Manoskey

(74) Attorney, Agent, or Firm — Campbell Stephenson
LLP

(57) ABSTRACT

Various systems and methods for determining whether a
distributed storage cluster is operating with a last failure
domain are disclosed. The last failure domain is the only
node with access to a latest copy of configuration data and
an up-to-date copy of application data. In response to a
determination that the distributed storage cluster is operating
with the last failure domain, the method causes the last
failure domain to copy one or more changed blocks of the
up-to-date copy of the application data from one or more
mirrored volumes to a recovery server for storage.

20 Claims, 8 Drawing Sheets

Master Node 105(1 Node 105(2
o 52 || ot 150
le—»| | Application | k¢»] | Aoplication
Memory 135 135
e . Configuration Recovery Server 175
File System 140 Data 130
. Configuration Data 130
Yol Manager Aoplication Storage Device Storage Device
e P 1012) 110(3)
— — Volume Volume -
115(2 115(3 Application Data 125
Plex Plex
1201) 1200 Last Failure Domain Module
Plex Plex 170
i 120(2, 120(3 .
Storage Device 110(1 Application Data 125 I I
volume | plex Plex Plex n g o
Configuration Data Application Application
11501 | 12001) | 12002) | 120(3 | 130 | Data 125 Data 125

Partially-Connected SAN Storage 160

SAN Storage 165

US 9,483,367 B1

Sheet 1 of 8

Nov. 1, 2016

U.S. Patent

5o} sbeio)s NYS

0l
3INPO Ulewo(ainjled 1se7

21 EJeq uoljes)|ddy

DET eleq uonenbiyuo)

1 Janiag Alanoosy

Vi Ol

097 Bei0ig NYS pejosuuod-A|lenled

BENN

Sl ereq Szl Beq
uojeaijddy uoleljddy
]]
(3043 [t [
Xald Xald
ozt ozr
X3|d X3|d
(310 (1A
BUWINOA SUINIOA
(G 20

a01r8(8beI0Ig

801n8(8belIoIg

49 49
uonedlddy uoneolddy
{€J50} @poN 2)S01 8poN

\ ‘/
0 e | o | thioer | e
EEQ LoREANbYLoD od | xold | xaid | eunpop
¢l Bed CO_FmU__QQ< |— 1J0} | @2IA8Q wmm._oyw

e

——

Gel (578
uoneoljddy JeBeueyy sunjop
02T ele@ _
uonemnByuon OvT waishg siig
05}
Kows|y
1JG01 apoN Jeisep

/ Y00 JeisniQ ebeuols peinqLasig

US 9,483,367 B1

Sheet 2 of 8

Nov. 1, 2016

U.S. Patent

0zl

3|npopy Ulewioq ainjied ise

ejeq vopeolcdy |

Gcl
[i[33

0T e1eQ uonenBiuon _

TZT Jonag K1anooay

i
43
gleq

uoneoiddy

_
w0z

xeld

ozt
X8ld

€51

alwnjop

it

soin8(] ebelo)g

SEl
uonedlddy

(€150} @poN

78
HoMIeN

A E |

e
43
gleq

uoneoiddy

_
w0z

xeld

101
xeld
¥4}
aWnjoA

A

soine(] ebeio)g

T~

DET ereq uonenbyuon _

77 eleq uoneoyddy _

SEl
uonedl|ddy

(2)50) 8poN

€)oct | loct | (Loz) TSI
X8ld Xa|d xald SUNoN
TI0LT 2olne(ebeloig
GEl SPr
uonedddy JaBeuepy swnjop
0€7 ereg —_—

uoneinbyuo) 071 weishs o
[
fowapy

GG 40S$8201d
{17507 epoN Jejsep

/ 4001 218N SS4

U.S. Patent Nov. 1, 2016 Sheet 3 of 8 US 9,483,367 Bl

200A

\

Are nodes part
of distributed
storage cluster?
205

NO

Copy latest copy of configuration data from
master node and storage device of
master node to recovery server
210

Is distributed storage
cluster operating with
last failure domain?

NO

Copy changed blocks of application data
from storage device of last failure domain
to recovery server
220

Is distributed storage
cluster operating with more

NO

End

A

U.S. Patent Nov. 1, 2016 Sheet 4 of 8 US 9,483,367 Bl

200B
\

Store latest copy of configuration data on recovery server
230

Y

Tag copies of configuration data with ID
235

Is node last failure domain?
240

Is only one node healthy?
245

Store changed blocks of application
data on recovery server <
250

A 4

Setrecovery flag to 1
255

Delete configuration data and

application data from C)
recovery server

270 y §
More than one healthy node? <
20
Setrecovery flag to 0
> 265

FIG. 2B

U.S. Patent Nov. 1, 2016 Sheet 5 of 8 US 9,483,367 Bl

200C

Receive latest copy of configuration data
from master node and storage device
of master node
275

Is master node last
failure domain?
280

YES

A 4

Receive and log
changed blocks
of application

data from Is any other node in distributed)
master node storage cluster last
285 failure domain? h

290

Receive and log changed blocks of

application data from other node
Delete
S 295
configuration
data and
application data
299
YES Is there more than one NO
failure domain in distributed

storage cluster?
298

FIG. 2C

US 9,483,367 B1

Sheet 6 of 8

Nov. 1, 2016

U.S. Patent

3€ 'Ol
0cd 64 8cd 424 9cd 6za
. vzg | ¢za | zzd lzd | oza | 6id
QM Q\n\ » 8ld AR alg Glg vid £lg
eleg oed alg 14 oLd 64 84 /4
ejeg gca 9d Gd ¥4 €d cd 4
eleg ¢cd
ejeq 1za .
— 1 e 9¢€ 9I4
ejeq oig oca | e6za | 829 | Lza | 9z | sed
eleg 84 vcd £cd 44z} 74: 0ca 619
062 syoolg pabiuey) gig | <8 | 9@ | g8 | w9 | €9
a8 L4 0Lg 64 8g /4
94 6q ¥8 €4 cd 4
g€ ‘o4
€09 £ee0s <M QWN
004 £€c0s 0 € I0A 068 Li60r
¥ I0A 00y L160y b ¥ IOA 068 L 160
£ 10A 00y LL60y } £ oA 1[04 L 60y
¢ IOA €09 L1607 b CIOA £09 L 160V
L IOA 609 L160y > b L IOA 609 1160y
0153 1743 [73 0EE (1743 %3
alen aWn[oA ql dnoio ejeq al 48snin Be|4 A1ancoay aWeN aWn|oA ql dnoig eleq al4asnD
G771 Janas Aisncosy g00¥ 91N sS4 / 00z

US 9,483,367 B1

Sheet 7 of 8

Nov. 1, 2016

U.S. Patent

v OI4
o U3 (57
B¢ d a21ne(301na(
VLIS ndu; Aeidsig
7 Y 7 Y
\ v
(2% %47 Sy [<{0i7
QeS| aoeLBY| Jodepy alnoniselu|
abeio)g ndu| feidsig uojEIUNWWOY)
0 A A \
4 A 4
<+ A A A y w—
4 A4 v A4 \ 4
— L . o .
momHME_ Gey 0cy 3|NPOJy urewoq GGl
UONEDIUNWWOY J19]|08u0) QI 19]|04u07) AJOWS| aun|ied 1se] 108S8901
[
Aowsp

I/ 00

Juswuouiaug Bupndwon sjdwex3

US 9,483,367 B1

Sheet 8 of 8

Nov. 1, 2016

U.S. Patent

(N)oLL

8o1A8(— mzumo_\
abeiog SPON

Y []

Y ®

Y []
(2)0k1 AL
ooneg [Muwﬂ
abeiojg

LoLL
80IA8(]
sbeioyg

G Ol4
018
walsAg A1ancosy pue
abelo)s ejeq J9isn|D SS4
0¢%

P J9Isn|D SS4 0zl
alnpop
A ulewoq

aln|ieq 1se
a8l
SIOMIBN [
Janag A1eaoosy
Y

(17501

9PON Jojsely

AN

009
Wawuoaug Buryiomiap sjdwex3

US 9,483,367 Bl

1
DATA RECOVERY IN DISTRIBUTED
STORAGE ENVIRONMENTS

FIELD OF THE INVENTION

This invention relates to data recovery, and more particu-
larly, to data recovery in distributed storage environments.

DESCRIPTION OF THE RELATED ART

A cluster includes multiple interconnected computers that
appear as if they are one computer to end users and appli-
cations. Each interconnected computer in the cluster is
called a node. The combined processing power of multiple
nodes can provide greater throughput and scalability than is
available from a single node. In clustered environments,
multiple nodes can share a storage device for the purpose of
data storage, replication, and deduplication. A shared storage
disk/device (e.g., a Cluster Shared Volume (CSV)) contain-
ing a volume (e.g., a data volume) can be made accessible
for read and write operations by all nodes within a cluster.
Each cluster can have multiple CSVs. However, storage is
not shared in a cluster based on a shared nothing (SN)
storage environment.

A Storage Area Network (SAN) is a network that includes
storage devices and provides access to data storage. SANs
are primarily used to enhance storage devices, such as disk
arrays and are accessible to nodes such that the storage
devices appear as locally attached storage devices to the
nodes. However, because of distinctions between local stor-
age devices, data storage based on a SAN-model is not
without its problems. SAN storage environments can
encounter problems related to the physical connectivity and
access of storage devices because of the boundary between
local storage, that is shared, and network storage, that is
shared.

Flexible Storage Sharing (FSS) offers an alternative to
certain of the problems encountered with SAN-based data
storage by enabling network sharing of physical storage
devices (e.g., local storage, DAS, SSD, internal storage, and
the like) across a cluster. FSS can provide data redundancy,
high availability, and data recovery without the need for
shared storage. Utilizing fast network interconnect between
nodes in the cluster, FSS allows network shared storage to
co-exist with physically shared storage.

SUMMARY OF THE INVENTION

Various systems and methods for determining whether a
distributed storage cluster is operating with a last failure
domain are disclosed. The last failure domain is the only
node with access to a latest copy of configuration data and
an up-to-date copy of application data. In response to a
determination that the distributed storage cluster is operating
with the last failure domain, the method causes the last
failure domain to copy one or more changed blocks of the
up-to-date copy of the application data from one or more
mirrored volumes to a recovery server for storage. In this
example, the mirrored volumes are stored at a storage device
associated with the last failure domain.

In one embodiment, the method causes a master node to
copy the latest copy of the configuration data to the recovery
server. The latest copy of the configuration data is for the
plurality of nodes. The method can also determine whether
the various nodes (e.g., the master node, the last failure
domain, one or more failure domains, etc.) are part of the
distributed storage cluster. In addition, the copying of the

10

15

20

25

30

35

40

45

50

55

60

65

2

changed blocks of the up-to-date copy of the application
data from the mirrored volumes to the recovery server for
storage continues until the distributed storage cluster has
more than one failure domain.

In other embodiments, each node (of the various nodes in
the distributed storage cluster) is coupled to a corresponding
storage devices (of various corresponding storage devices).
One of more of the storage devices include the mirrored
volumes, and the nodes execute an application that generates
the application data.

In one example, the method includes performing a restore
operation. The restore operation is performed using the latest
copy of the configuration data and the changed blocks of
application data stored at the recovery server and is per-
formed on the nodes after one or more nodes rejoin the
distributed storage cluster. After performing the restore
operation, the method deletes the latest copy of the configu-
ration data and the changed blocks of application data from
the recovery server.

In some embodiments, the method determines whether
the distributed storage cluster is operating under the last
failure domain which includes determining whether all
nodes of the other than the last failure domain have failed,
determining whether the storage device coupled to each
node has failed, and determining whether one or more nodes
that rejoin the distributed storage cluster are performing a
synchronization operation.

In one embodiment, the storage device associated with the
master node includes the up-to-date copy of the application
data and the master node and the storage device associated
with the master node include the latest copy of the configu-
ration data. In this example, the master node is the last
failure domain, the master node comprises one part of the
latest copy of the configuration data, and the storage device
comprises an another part of the latest copy of the configu-
ration data.

However, in other embodiments, it is not mandatory that
the master node should have storage connectivity. A node
without storage connectivity can be the master node and the
latest copy of the configuration data can be accessed over a
network by using the last failure domain.

In other embodiments, the distributed storage cluster
maintains a failure count ID that indicates whether the
restore operation should be performed from the recovery
server, or whether the master node comprises the latest copy
of the configuration data and the up-to-date copy of the
application data.

The foregoing is a summary and thus contains, by neces-
sity, simplifications, generalizations and omissions of detail;
consequently those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan-
tages of the present invention, as defined solely by the
claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1A is a block diagram of a distributed storage cluster,
according to one embodiment of the present invention.

FIG. 1B is a block diagram of a Flexible Storage Sharing
(FSS) cluster, according to one embodiment of the present
invention.

US 9,483,367 Bl

3

FIG. 2A is a flowchart of a data storage method if a
distributed storage cluster is operating with a last failure
domain, according to one embodiment of the present inven-
tion.

FIG. 2B is a flowchart of a method of storing configura-
tion data and application data on a recovery server, accord-
ing to one embodiment of the present invention.

FIG. 2C is a flowchart of a method of receiving configu-
ration data and application data at a recovery server, accord-
ing to one embodiment of the present invention.

FIG. 3A is a table illustrating details of how application
data is stored in a FSS cluster, according to one embodiment
of the present invention.

FIG. 3B is a table illustrating details of how application
data is stored on a recovery server, according to one embodi-
ment of the present invention.

FIG. 3C is a table illustrating changed blocks of applica-
tion data in a FSS cluster, according to one embodiment of
the present invention.

FIG. 3D is a table illustrating changed blocks of appli-
cation data logged on a recovery server, according to one
embodiment of the present invention.

FIG. 3E is a table illustrating how changed blocks of
application data are synchronized during a restore operation,
according to one embodiment of the present invention.

FIG. 4 is a block diagram of an example computing
environment that implements data storage and recovery in
distributed storage environments, according to one embodi-
ment of the present invention.

FIG. 5 if a block diagram of an example networking
environment that implements data storage and recovery in
distributed storage environments, according to one embodi-
ment of the present invention.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments of the
invention are provided as examples in the drawings and
detailed description. It should be understood that the draw-
ings and detailed description are not intended to limit the
invention to the particular form disclosed. Instead, the
intention is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the inven-
tion as defined by the appended claims.

DETAILED DESCRIPTION

Introduction

FSS systems suffer from certain shortcomings. Logical
volumes can be created out of network shared storage as
well as physically shared storage to provide a SN storage
environment. A SN storage environment is a distributed
storage environment in which each node in a cluster is
independent and self-sufficient. None of the nodes in the
cluster share disk storage. However, in a SN storage envi-
ronment, if a physical storage device fails or is removed, or
if a node contributing physical storage to a volume fails and
must be rebooted, the distributed storage environment can
become dependent on a last failure domain. If the last failure
domain or the physical storage device attached to the last
failure domain fails for any reason, an application executing
on the nodes in the cluster cannot be served.

In a clustered environment, storage is distributed and
shared between multiple nodes (e.g., computer systems). In
a Flexible Storage Sharing (FSS) cluster, which is a type of
distributed storage cluster, multiple nodes in a cluster can
share one or more Clustered Shared Volumes (CSVs). FSS
enables cluster wide network sharing of local storage. Local
storage can be in the form of Direct Attached Storage

10

30

40

45

60

4

(DAS), Sold-State Drive (SSD), or internal disk drives. The
network sharing of storage is enabled through the use of
network interconnect among the nodes of the cluster. FSS
allows network shared storage to co-exist with physically
shared storage. VERITAS Storage Foundation®, available
from Symantec Corporation of Mountain View, Calif., pro-
vides FSS as part of Storage Foundation™ Cluster File
System.

Sharing storage (e.g., by implementing a CSV) simplifies
storage management by allowing large numbers of nodes
(e.g., computers, servers, virtual machines, etc.) to access a
common shared disk or set of such disks. Nodes in a cluster
coordinate metadata 1/O operations to the shared storage via
an application-layer network protocol (e.g., Server Message
Block (SMB) protocol, Common Internet File System
(CIFS), etc.). Read/write operations from the various nodes
in the cluster can be passed directly to the shared storage
(e.g., Serial attached Small Computer System Interface
(SCSI), iSCSI, Fibre Channel, Fibre Channel over Ethernet,
etc.) via the aforementioned block-based protocols.

FIG. 1A is a block diagram of a distributed storage cluster.
Distributed storage cluster 100A includes a computing sys-
tem for performing data storage and recovery in distributed
storage environments. The computing system includes a
master node 105(1), and nodes 105(2) and 105(3). Master
node 105(1) is coupled to storage device 110(1) and nodes
105(2) and 105(3) are coupled to storage devices 110(2) and
110(3) respectively. Distributed storage cluster 100A
includes a cluster of nodes, which in turn includes master
node 105(1), node 105(2), and node 105(3). In this example,
master node 105(1) includes a processor 155 and a memory
150. Memory 150 stores configuration data 130, file system
140, and volume manager 145, and runs application 135.
Similarly, nodes 105(2) and 105(3) also run application 135
and can also store configuration data, a file system and a
volume manager (not shown). Master node 105(1) and
nodes 105(2) and 105(3) can each be any of a variety of
different types of computing devices, including a server,
personal computing device, laptop computer, netbook, per-
sonal digital assistant, tablet computer, or the like.

Master node 105(1), and nodes 105(2) and 105(3) are
each individually and independently coupled to storage
devices 110(1), 110(2), and 110(3) respectively. Storage
devices 110(1), 110(2), and 110(3) can include one or more
of a variety of different storage devices, including hard
disks, compact discs, digital versatile discs, solid-state drive
(SSD) memory such as Flash memory, and the like, or one
or more logical storage devices such as volumes imple-
mented on one or more such physical storage devices.

Master node 105(1) and all or part of storage device
110(1) can be integrated (e.g., where the storage device is
coupled to the master node’s internal processing devices by
an internal bus and is built within the same chassis as the rest
of the primary node) or separate. If separate, master node
105(1) and storage device 110(1) can be coupled by a local
connection (e.g., using a technology such as Bluetooth™,
Peripheral Component Interconnect (PCI), Small Computer
System Interface (SCSI), or the like) or via one or more
networks such as the Internet, a local area network (LAN),
or a storage area network (SAN). A similar configuration can
be implemented for node 105(2) and storage device 110(2)
and node 105(3) and storage device 110(3).

Storage device 110(1) stores application data 125 and
configuration data 130. Storage device 110(1) includes vol-
ume 115(1) which in turns includes three plexes—120(1),
120(2), and 120(3). Storage device 110(2) includes volume
115(2) which in turns includes two plexes—120(1) and

US 9,483,367 Bl

5

120(2). Storage device 110(3) includes volume 115(3) which
in turns includes three plexes—120(1) and 120(3). In a
distributed storage environment, volumes 115(1), 115(2),
and 115(3) can be referred to as mirrored volumes because
they each mirror physical storage from more than one
storage device.

A plex, as the term is used herein, identifies the storage
device from which physical storage is contributed to a
mirrored volume. For example, volume 115(1) of storage
device 110(1) has three plexes—120(1), 120(2), and 120(3).
Plex 120(1) refers to physical storage contributed from
storage device 110(1), plex 120(2) refers to physical storage
contributed from storage device 110(2), and plex 120(3)
refers to physical storage contributed from storage device
110(3). Therefore, in this example, volume 115(1), which is
a mirrored volume, is being provided physical storage from
all three storage devices 110(1), 110(2), and 110(3) of
distributed storage cluster 100A.

Distributed storage cluster 100A also includes recovery
server 175 which is coupled to nodes 105(1), 105(2), and
105(3) via a Storage Area Network (SAN). Recovery server
175 will be discussed in greater detail with respect to FIGS.
1B, 2C, and 3A-3E. In this example, SAN 180 also couples
a partially-connected SAN storage and a SAN storage to the
distributed storage cluster. Therefore, a SAN environment
can be simulated by directly coupling a storage device to a
node (e.g., storage device 110(1) to master node 105(1)) and
using both partially-connected SAN storage and SAN stor-
age to create the distributed storage environment. In this
manner, network shared storage (e.g., partially-connected
SAN storage 160 and SAN storage 165) can co-exist with
physically shared storage (storage devices 110(1), 110(2),
and 110(3)). However, it should be noted that a FSS cluster
does not require SAN or network shared storage.

FIG. 1B is a block diagram of a FSS cluster. FSS cluster
100B includes a computing system for performing data
storage and recovery in shared nothing storage environ-
ments. FSS cluster 100B includes recovery server 175. A
recovery server is a computing device that performs data
storage and recovery operations in a distributed storage
environment. In this example, recovery server 175 stores
configuration data 130 and application data 125. Recovery
server 175 also implements a last failure domain module 170
and is coupled to master node 105(1), and nodes 105(2) and
105(3).

Configuration data is data that is used by a Cluster Volume
Manager (CVM) (e.g., volume manager 145) for configuring
the various nodes in a FSS cluster. As shown in FIG. 1B,
master node 105(1) is a configuration master node for
logical volume management, and nodes 105(2) and 105(3)
are slaves. Configuration data 130 includes data to maintain
the configuration of mirrored volumes (e.g., volumes 115(1),
115(2), and 115(3)). For example, configuration data can
track and log changes to mirrored volumes by updating an
operating system at the kernel level. In the example of FIG.
1B, the latest copy of configuration data 130 applicable to
FSS cluster 100B is available in the kernel of master node
105(1) as well as on storage device 110(1). However, it
should be noted that should master node 105(1) fail, node
105(2) or node 105(3) can take over the role of the master
node.

In some embodiments, CVM maintains configuration data
130 in at least three locations in FSS cluster 100B: in a
kernel of master node 105(1), in a configuration daemon of
CVM, and on a storage device of a node in the cluster (not
shown in FIG. 1B). In this example, all changes made to
configuration data 130 can be captured to ensure that all

10

15

20

25

30

35

40

45

50

55

60

65

6

three copies of configuration data 130 are consistent. For
example, a change to configuration data 130 can include the
creation of a new data object, deletion of an existing data
object, or a state change of a data object. In one embodiment,
if a node does not have access to a storage device, the latest
copy of the configuration data can be accessed by that node
over a network (e.g., network 185).

Application data 125 is a set of data that is maintained by
application 135 (e.g., a database application, not shown in
FIG. 1B). Application data 125 is generated by application
135 executing on nodes in FSS cluster 100B. As shown in
FIG. 1B, application 135 executes on all the nodes in FSS
cluster 100B and generates application data 125, which is
stored in volumes 115(1), 115(2), and 115(3) of storage
devices 110(1), 110(2), and 110(3) coupled to master node
105(1), and nodes 105(2) and 105(3) respectively. For
example, application data can be generated by a write
operation. A write operation, or more simply, a write or an
application write, is any application I/O operation that
causes modifications to the application’s data (e.g., creation,
deletion, etc.). All nodes that are part of FSS cluster 100B
generate application data (e.g., writes from application 135,
which can be executing on one or more nodes in the FSS
cluster). It should also be noted that, all nodes that are part
of FSS cluster 100B can write application data to all storage
devices that are part of FSS cluster 100B.

In this example, master node 105(1) implements a file
system 140. File system 140 is a software program that
organizes and controls access to files. Here, file system 140
controls access to the files used by application 135 stored on
storage device 110(1). The term “file system” can refer to
both the software (which itself can be part of an operating
system) that organizes the files and the collection of files that
are organized thereby. Files can be organized hierarchically,
with directories collecting groups of files and/or other direc-
tories. A file system application like file system 140 can
provide applications, such as a database application, with
access to files (e.g., to open, read, modify, create, delete, and
otherwise interact with the data within the files).

A file system also tracks how the files the file system
organizes map to the blocks of data within the underlying
volume. This way, when an application requests access to a
particular file (e.g., using the file name of the file), the file
system can translate that request into a request for the
particular blocks of data included in the requested file.
Accordingly, the file system maintains information regard-
ing blocks of data in storage devices 110(1), 110(2), and
110(3) belong to each file.

Each block is a unit of data. In some embodiments, blocks
are fixed-size units of data that represent the smallest
granularity of data that can be manipulated by the file
system, underlying persistent storage device, and/or operat-
ing system. In other embodiments, blocks can be variably-
sized, can represent a larger granularity than the smallest
representable by the file system, and/or have other, different
characteristics than described herein.

Recovery server 175 also implements a last failure
domain module 170. In one embodiment, last failure domain
module 170 determines whether distributed storage cluster
100A is operating with a last failure domain. If distributed
storage cluster 100A is operating with a last failure domain,
last failure domain module 170 causes the last failure
domain to copy one or more changed blocks of an up-to-date
copy of application data from one or more mirrored volumes
to recovery server 175 for storage.

Further, while connections between application 135,
recovery server 175, and storage device 110(1) are shown in

US 9,483,367 Bl

7

relation to master node 105(1), these connections are for
illustration purposes only and other connection configura-
tions are possible. For example, one or more of application
135 and storage device 110(1) may be physically outside but
coupled to the node represented by master node 105(1). An
example of a commercially available CVM is VERITAS
Volume Manager®, available from Symantec Corporation
of Mountain View, Calif.

Failure Domains in a FSS Cluster

In a distributed storage cluster (as shown in FIG. 1A) or
in a FSS cluster (as shown in FIG. 1B), physical storage is
shared and originates from several nodes in the cluster. For
example, in FIG. 1B, storage device 110(1), which has a
volume (e.g., volume 115(1)), includes storage from all three
storage devices—110(1), 110(2), and 110(3). In this
example, volume 115(1) is created from physical storage
from storage device 110(1) as well as from two mirrored
volumes of physical storage from storage devices 110(2) and
110(3) which are illustrated as plex 120(2) and 120(3)
respectively.

When application 135 generates application data 125
(e.g., through a write operation), the /O generated by
application 135 is stored in all three volumes 115(1), 115(2),
and 115(3). Because a FSS cluster shares physical storage by
creating mirrored volumes, critical data can be protected if
one or more storage devices fail for any reason. For
example, if storage device 110(3) fails or goes offline,
application 135 can still be served by storage devices 110(1)
and 110(2), which both have an up-to-date copy of appli-
cation data 125. Therefore, in the case of a failure of node
105(3) or storage device 110(3), master node 105(1) and
node 105(2) act as failure domains.

A failure domain, in at least certain embodiments, is any
node (e.g., computer system) which has access to the latest
copy of configuration data used by all the nodes in the FSS
cluster as well as an up-to-date copy of application data
generated by the application executing on the nodes in the
FSS cluster. Because a distributed storage or FSS cluster
shares physical storage from various storage devices by
creating mirrored volumes, failure of a node or a storage
device coupled to a node (which contributes physical storage
to the FSS cluster) can have catastrophic consequences
because the physical storage the failed storage device (or a
storage device coupled to a failed node) contributes to the
mirrored volumes is no longer available. In this scenario, the
FSS cluster is dependent on the surviving node(s) (or failure
domain(s)) to serve the application. Similar consequences
can result if a node goes offline, or is rebooted for some
reason.

For example, in the three-node FSS cluster shown in FIG.
1B, if node 105(2) fails and/or has to be rebooted for any
reason, or if storage device 110(2) fails, FSS cluster 100B is
left with two failure domains—master node 105(1) and node
105(3). The physical storage being contributed by storage
device 110(2) (e.g., plex 120(2)) is also not available
because storage device 110(2), which is directly coupled to
node 105(2), has failed, or node 105(2) itself has failed or is
offline.

It and when node 105(2) does rejoin FSS cluster 100B,
node 105(2) will not have an up-to-date copy of application
data 125 to serve application 135 because application 135
may generate additional application data while node 105(2)
is offline. Therefore, node 105(2) has to synchronize appli-
cation data from healthy nodes (e.g., either master node
105(1) or node 105(3)) to revert back to a healthy state
where node 105(2) has an up-to-date copy of application
data 125 to serve application 135. The difference in changed

20

30

35

40

45

50

8

blocks of data from the time of failure of node 105(2) to the
time the synchronization of node 105(2) is complete can be
significant.

A Shared Nothing Storage Environment in a FSS Cluster

As discussed above, a FSS cluster is a type of distributed
storage cluster. To mitigate problems SAN storage environ-
ments can encounter related to the physical connectivity and
access of storage devices because of the boundary between
physically shared storage and network shared storage, and
due to the lack of easy scalability, FSS clusters can be used
to implement a shared nothing (SN) storage environment. A
SN storage environment is a distributed computing archi-
tecture in which each node in the FSS cluster is independent
and self-sufficient. There is no single point of contention
across the system. More specifically, none of the nodes share
memory or disk storage.

FSS cluster 100B can be implemented as a SN cluster. For
example, as illustrated in FIG. 1B, master node 105(1), and
nodes 105(2) and 105(3) are not actually sharing disk
storage. But yet, these nodes behave as a single entity
because they emulate storage sharing via mirrored volumes.
In one embodiment, network interconnect between master
node 105(1), and nodes 105(2) and 105(3) (e.g., Ethernet or
Infiniband provided by network 185) can be used to share
configuration data (for FSS cluster 100B) as well as appli-
cation data. For example, a switched Ethernet or Infiniband
fabric can be used to allow direct communication between
master node 105(1), and nodes 105(2) and 105(3). In order
to maintain resiliency in case of node or storage device
failure, each node in FSS cluster 100B replicates the local
node storage across two or more nodes and then re-balances
the copies of data dynamically as nodes join or leave FSS
cluster 100B. For example, local node storage of storage
device 110(1) (illustrated as plex 120(1) in FIG. 1B) is
replicated across two or more nodes, nodes 105(2) and
105(3), and illustrated as plexes 120(2) and 120(3) respec-
tively.

However, because the actual storage devices in the SN
storage environment described above are not shared (e.g.,
storage devices 110(1), 110(2) and 110(3) are exclusive to
master nodes 105(1), and nodes 105(2) and 105(3) respec-
tively), FSS cluster 100B is dependent on one or more
failure domains to serve application 135. If nodes 105(2) and
105(3) fail, if storage devices 110(2) and 110(3) fail, if node
105(2) and storage device 110(3) fails, or if node 105(3) and
storage device 110(2) fails, then FSS cluster 100B will be in
a jeopardy state and will operate with a last failure domain.
Last Failure Domain in a Shared Nothing FSS Cluster

A last failure domain includes the only node in a distrib-
uted storage cluster (e.g., FSS cluster 100B) with access to
an up-to-date copy of application data and a latest copy of
configuration data. In one embodiment, a distributed storage
cluster (e.g., FSS cluster 100B) is in a jeopardy state if the
distributed storage cluster operates with the last failure
domain. Therefore, if a distributed storage cluster is oper-
ating with a last failure domain, an up-to-date copy of
application data and a latest copy of configuration data needs
to be stored for data backup and recovery purposes. For
example, if a failed node rejoins the distributed storage
cluster, the failed node can use the stored copies of the
application data and the configuration data for synchroniza-
tion purposes and once healthy, can eliminate the jeopardy
state of the distributed storage cluster. Because the recovery
server stores changed blocks of application data, in one
embodiment, a node which fails and has to be rebooted can
use application data stored on the recovery server to syn-
chronize lost data (e.g., changed blocks of data due to

US 9,483,367 Bl

9

application writes generated in the time during which the
node was offline, rebooting, and synchronizing itself).

FIG. 2A is a flowchart of a data storage method if a
distributed storage cluster is operating with a last failure
domain. The method begins at 205 by determining if the
nodes in the cluster are part of a distributed storage cluster.
For example, as illustrated in FIG. 1B, master node 105(1),
and nodes 105(2) and 105(3) are part of FSS cluster 100B,
which is a distributed shared nothing storage cluster. In one
embodiment, last failure domain module 170 determines
whether one or more nodes are part of a distributed storage
cluster. If nodes are part of a distributed storage cluster, and
as shown at 210, last failure domain module 170 causes a
master node to copy a latest copy of configuration data from
the master node and the storage device coupled to the master
mode to a recovery server. For example, last failure domain
module 170, which is part of recovery server 175, causes
master node 105(1) to copy configuration data 130 from
master node 105(1) and configuration data from storage
device 110(1) to recovery server 175.

In some embodiments, the CVM in FSS cluster 1008
(e.g., volume manager 145) provides logical volume man-
ager capabilities to FSS cluster 100B. In this example,
master node 105(1) handles all shared disk group configu-
ration changes, which is stored as configuration data 130 on
master node 105(1) and storage device 110(1). All com-
mands related to configuration changes are sent to master
node 105(1). In another embodiment, the role of master node
105(1) can fail over or change to another node in the cluster
if master node 105(1) crashes, fails, or has to be rebooted for
any reason. For example, if master node 105(1) fails and
leaves FSS cluster 100B, node 105(2) or node 105(3) can
step in and assume the role of master node 105(1). In this
manner, any node on FSS cluster 100B has the ability to
switch into the role of master node 105(1). In addition,
because all nodes on FSS cluster 100B can write application
data 125 to all storage devices associated with FSS cluster
100B (e.g., storage devices 110(1), 110(2), and 110(3)), in
one embodiment, the role of a master node can be switched
based on the availability and/or system resources of master
node 105(1).

The method of FIG. 2A continues at 215 by determining
whether the distributed storage cluster (e.g., distributed
storage cluster 100A) is operating with the last failure
domain. As an embodiment, the last failure domain includes
the only node in a distributed storage cluster (e.g., FSS
cluster 100B) with access to an up-to-date copy of applica-
tion data and a latest copy of configuration data. If the
distributed storage cluster (e.g., FSS cluster 100B) is oper-
ating with the last failure domain, at 220, last failure domain
module 170 copies changed blocks of application data from
the storage device associated with the last failure domain to
the recovery server. For example, if nodes 105(2) and 105(3)
fail, if storage devices 110(2) and 110(3) fail, if node 105(2)
and storage device 110(3) fails, or if node 105(3) and storage
device 110(2) fails, FSS cluster 100B will be operating with
a last failure domain, which in this instance, is master node
105(1). In this example, last failure domain module 170 will
copy (or cause master node 105(1) to copy) changed blocks
of application data 125 from volume 115(1) of storage
device 110(1) to recovery server 175.

The method ends at 225 by determining whether the
distributed storage cluster is operating with more than one
failure domain. If the distributed storage cluster is operating
with more than one failure domain, then presumably, either
node 105(2) and 105(3) has rejoined FSS cluster 100B and
is in a healthy state (e.g., has an up-to-date copy of appli-

10

15

20

25

30

35

40

45

50

55

60

65

10

cation data 125 and can serve application 135). The exis-
tence of more than one failure domain can mean that the
cluster is not in a jeopardy state. Therefore, in one embodi-
ment, the copying of 220 continues until the distributed
storage cluster has more than one failure domain.

Last failure domain module 170 can determine whether
the distributed storage cluster is operating with the last
failure domain upon the occurrence of several scenarios. The
determination can include determining whether all nodes of
the distributed storage cluster other than a last node have
failed. The last remaining node that is capable of serving the
application executing on the various nodes in the cluster is
the last failure domain. The determination can also include
determining whether the storage devices coupled to the
nodes in the cluster have failed leaving the cluster with just
one storage device and one node to serve the application. In
addition, the determination can also include determining
whether one or more nodes that rejoin the cluster are
performing a synchronization operation (and are thus
unavailable to serve the application with an up-to-date copy
of application data).

As discussed above, a node that fails (and, e.g., has to be
rebooted) can, at some point in the future, rejoin the dis-
tributed storage cluster. However, when the failed node
rejoins the distributed storage cluster, the storage device
coupled to that node does not have the latest copy of
configuration data or an up-to-date copy of application data.
However, from an application perspective, the rejoined node
appears to be in a healthy state because the rejoined node is
capable of executing the application and writing newly
generated application data to one or more storage devices.
However, from a CVM perspective, the rejoined node does
not have the up-to-date copy of application data because of
new application data that is generated in the time during
which the rejoined node was offline. Therefore, in at least
certain embodiments, unless and until the rejoined node
performs a synchronization operation (e.g., either from the
recovery server or from another healthy node), the rejoined
node cannot serve the application due to the missing data.

Therefore, in one embodiment, the latest copy of con-
figuration data 130 and an up-to-date copy of application
data 125 is stored in recovery server 175. Parts of the latest
copy of the configuration data can be located in a kernel of
the last failure domain and other parts of the latest copy of
the configuration data can be located on the storage device
associated with the last failure domain. Although application
data is available from all storage devices coupled to all
nodes executing the application (e.g., all failure domains), in
the case of the last failure domain, the up-to-date copy of
application data is available from the storage device asso-
ciated with the last failure domain.

It should be noted that copying application data to the
recovery server only happens if the distributed storage
cluster is operating with a last failure domain. In addition to
the scenarios described above, an administrator may deter-
mine that the distributed storage cluster is operating with a
last failure domain. In one embodiment, even if there are two
failure domains in the distributed storage cluster, an admin-
istrator may determine that the distributed storage cluster is
operating with a last failure domain because one of the
failure domains may be experiencing network interconnec-
tion difficulties.

In another embodiment, a determination that the distrib-
uted storage cluster is operating under the last failure
domain may be made based on the history of node failures
in the distributed storage cluster. For example, if FSS cluster
100B has two failure domains (e.g., master node 105(1) and

US 9,483,367 Bl

11

node 105(2)), either of which can serve application 135, FSS
cluster can still be treated as operating under a last failure
domain, for example, if node 105(2) has a history of failures
and requires constant rebooting. In this example, a last
failure domain situation can be declared based on the
inevitability that the distributed storage cluster will be left
operating with a last failure domain based on the operating
conditions and/or history of operating failures of the nodes
in the distributed storage cluster.

It should also be noted that determining whether a dis-
tributed storage cluster is operating with a last failure
domain is based on the operating condition of both the node
executing the application, as well as the storage device
coupled to the node that stores application data generated by
the application. In this embodiment, the determination of
whether the distributed storage cluster is operating with a
last failure domain is not determined based on a single point
of failure, but rather, is determined based on an amalgama-
tion of failed operating conditions of nodes and/or storage
devices that make up the distributed storage cluster.

For example, in reference to FIG. 1B, any combination of
failures, such as the following, can result in the determina-
tion that FSS cluster 100B is operating with a last failure
domain (e.g., master node 105(1) and storage device 110
(1)): nodes 105(2) and 105(3), storage devices 110(2) and
110(3), node 105(2) and storage device 110(3), or node
105(3) and storage device 110(2). Therefore, in one or more
embodiments, a combination of a failure of a storage device
and a node that leaves a single node-storage device combi-
nation in the distributed storage cluster that can serve an
application and has access to a latest copy of configuration
data and an up-to-date copy of application data can result in
the determination that the distributed storage cluster is
operating with a last failure domain.

FIG. 2B is a flowchart of a method of storing configura-
tion data and application data on a recovery server. The
method begins at 230 by storing the latest copy of configu-
ration data 130 on recovery server 175. At 235, the copy of
configuration data 130 stored on recovery server 175 is
tagged with an identification tag (ID) (e.g., a recovery flag).
At 240, a determination is made whether a node in the
distributed storage cluster is a last failure domain. If the
node is the last failure domain, or as determined in 245, if
only one node is healthy, the method at 250, stores changed
blocks of application data on recovery server 175, and at
355, sets the recovery flag (e.g., to 1).

In some embodiments, changed blocks of application data
refers to writes generated by the application between the
time after the determination is made that the distributed
storage cluster is operating with the last failure domain, and
until the time the distributed storage cluster has more than
one failure domain. In one embodiment, a recovery flag
indicates whether changed blocks of application data need to
be copied from the last failure domain to the recovery server.
At 255, the value of a recovery flag that is set (e.g., to 1) and
indicates that the distributed storage cluster is operating with
a last failure domain, and also indicates to last failure
domain module 170 that changed blocks of application data
must be copied to recovery server 175 until the distributed
storage cluster is operating with more than one failure
domain (e.g., by the rejoining and synchronization of
another node to create more than one healthy node/failure
domain in the distributed storage cluster).

At 260, if there is more than one healthy node in the
distributed storage cluster (e.g., two or more failure
domains), the value of the recovery flag is set to 0, and at
265, configuration data 130 and application data 125 is

10

20

25

30

35

40

45

50

55

60

65

12

deleted from recovery server 175. If there is more than one
failure domain, any node that fails and has to be rebooted
can synchronize missing data from the healthy nodes and the
distributed storage cluster is not in a jeopardy state. There-
fore, to prepare for the next determination that the distrib-
uted storage cluster is operating with a last failure domain,
previously stored copies of configuration data and applica-
tion data have to be deleted from the recovery server.
Role of the Recovery Server

A recovery server is a computing device that stores a latest
copy of configuration data and an up-to-date copy of appli-
cation data for data storage and recovery purposes. Recovery
server 175 performs data recovery at the volume level. In
one embodiment, recovery server 175 is coupled to master
node 105(1), and nodes 105(2) and 105(3) through network
185 which implements the same fast network interconnect
technology that is used for data communication between
master node 105(1), node 105(2), and node 105(3). There-
fore, if a last failure domain also fails in a distributed storage
cluster, recovery server 175 can be used to serve application
135 once one or more nodes rejoin the distributed storage
cluster (e.g., upon rebooting) without waiting for the nodes
to first synchronize missing data.

FIG. 2C is a flowchart of a method of receiving configu-
ration data and application data at a recovery server. The
method begins at 275 by receiving the latest copy of
configuration data 130 from master node 105(1) and storage
device 110(1). At 280, the method determines if master node
105(1) is the last failure domain. If master node 105(1) is the
last failure domain, recovery server 175, at 285, receives and
logs changed blocks of application data 125 from master
node 105(1), and if master node 105(1) is not the last failure
domain, the method, at 290 determines if any other node in
the distributed storage cluster is the last failure domain. If
there is another node other than the master node that is the
last failure domain, recovery server 175, at 295, receives and
logs changed blocks of application 125 from the node that is
the last failure domain. At 298, the method determines if the
distributed storage cluster has more than one failure domain.
If the distributed storage cluster has more than one failure
domain, the method, at 299, deletes configuration data 130
and application 125 from recovery server 175.

In one or more embodiments, recovery server 175 can be
used to perform (or facilitate) a restore operation. The
restore operation can be performed using the latest copy of
configuration data 130 and the changed blocks of application
data 125 stored on recovery server 175. In this example, the
restore operation is performed on one or more nodes of FSS
cluster 100B after one or more nodes rejoin FSS cluster
100B. If the distributed storage cluster has two or more
failure domains, the restore operation has to be performed
from one of the existing failure domains. This is because
changed blocks of application data are not sent to the
recovery server for storage unless a determination is made
that the distributed storage cluster is operating with a last
failure domain, which, by definition, means that there is only
one failure domain serving the distributed storage cluster
and the application.

In one embodiment, if the distributed storage cluster is
operating with a last failure domain, the restore operation
can be performed from the recovery server. For example, if
master node 105(1) of FIG. 1B is the last failure domain, and
if node 105(2) exists (e.g., by rebooting) and rejoins FSS
cluster 100B, then recovery server 175 can be used to
perform a restore operation for node 105(2). Node 105(2)
can be synchronized with the latest copy of configuration
data as well as the up-to-date copy of application data which

US 9,483,367 Bl

13

is stored on recovery server 175 after the determination is
made that FSS cluster 100B is operating with a last failure
domain. In another embodiment, node 105(2) can also be
synchronized with the latest copy of configuration data as
well as the up-to-date copy of application data from master
node 105(1), which, because node 105(2) is the last failure
domain, has access to the latest copy of configuration data
as well as the up-to-date copy of application data. Therefore,
in a restore operation in which the distributed storage cluster
is operating with a last failure domain, a restore operation
can be performed from either the recovery server or from the
node that is the last failure domain. However, the restore
operation may be performed exclusively from the recovery
server to allow the last failure domain to serve the applica-
tion executing on the various nodes in the distributed storage
cluster without affecting system performance.

In one embodiment, if the distributed storage cluster is
operating with a last failure domain, an application write
generated by the node that is the last failure domain is first
written to the recovery server before the application write is
written to the storage device coupled to the node that is the
last failure domain. Once an acknowledgement from the
recovery server is received that the application write has
been stored, then the last failure domain writes the same
application write to the storage device. For example, if
master node 105(1) is the last failure domain, then a write
generated by application 135 executing on master node
105(1) is first sent to recovery server 175 for storage. The
application write is then written to volume 115(1) on storage
device 110(1) only after an acknowledgement is received
from recovery server 175 that the application write has been
successfully stored. Therefore, if the distributed storage
cluster is operating with a last failure domain, an application
write is considered complete only when acknowledgement is
received that the application write is written to both the
recovery server and the storage device associated with the
last failure domain.

In another embodiment, the recovery server can also
update a node that rejoins the distributed storage cluster with
the latest copy of configuration data. As discussed above,
configuration data 130 is data that is used by CVM for
configuring the various nodes in the distributed storage
cluster. In this example, if a new data group or a new volume
is created by the nodes executing application 135, then such
transactions related to shared data groups and changes
related to volume manager 145 are stored on recover server
175. In this manner, when a failed node reboots and rejoins
the distributed storage cluster, the node has access to the
latest copy of configuration data from the recovery server.

FIGS. 3A, 3B, 3C, 3D, and 3E are tables that illustrate an
example of the manner in which application data and
configuration data is stored in the various storage devices of
a FSS cluster and on the recovery server. FIG. 3A is a table
that illustrates how configuration data is organized on a
master node of a FSS cluster. Data stored on the various
storage devices in a FSS cluster is categorized according to
cluster ID 310, data group ID 320, and volume name 330,
and is assigned a recovery flag 340. In this example, a
recovery flag that is set indicates enablement of logging/
copying of changed blocks of application data to the recov-
ery server because the distributed storage cluster is operating
with a last failure domain.

In one embodiment, and as illustrated by FIG. 3B, the
latest copy of configuration data is copied from master node
105(1) to recovery server 175. Although the master node
initially copies configuration data to the recovery server
(e.g., even when the distributed storage cluster is not oper-

10

15

20

25

30

35

40

45

50

55

60

65

14

ating with the last failure domain or if there are more than
one failure domains), if a determination is made that the
distributed storage cluster is operating with the last failure
domain, the master node replaces and/or updates the earlier
stored copy of the configuration data stored on the recovery
server with a latest copy of configuration data. As mentioned
above, recovery flag 340 indicates whether recovery server
175 has the latest copy of configuration data 130. Recovery
flag 340 can also indicate to a node rejoining the distributed
storage cluster whether the rejoining node has the latest copy
of configuration data 130. For example, if a failed node
reboots and rejoins FSS cluster 100B, recovery flag 340
being set indicates to the node that the node has to use the
latest copy of configuration data 130 from recovery server
175 (e.g., the rejoined node does not have the latest CVM
configuration).

In another embodiment, after a node rejoins the distrib-
uted storage cluster and updates itself with the latest copy of
configuration data 130, the node then checks recovery server
175 for changed blocks of application data 125. FIG. 3C
illustrates changed blocks of application data 125 that have
been generated due to new application writes from the time
a node fails to the time the node rejoins FSS cluster 100B.
For example, as illustrated in FIG. 3D, changed blocks B8,
B10, B12, B21, B22, B25, and B30 are logged and written
to recovery server 175. If and when a node rejoins FSS
cluster 100B, the node can check recovery server 175 to
determine changed blocks 250 of application data 125. Once
changed blocks 250 of application data 125 are determined,
then, as illustrated by FIG. 3E, the node can copy and
replace changed blocks of 250 of application data 125
directly from recovery server 175. Therefore, a complete
recovery can be achieved once the node has the latest copy
of configuration data 130 and the up-to-date copy of appli-
cation data 125.

In some embodiments, if other nodes remain offline after
the recovery of a given node, then the recovered node can be
designated as the master node. Because the recovered node
is now healthy (e.g., the node has the latest copy of con-
figuration data 130 and the up-to-date copy of application
data 125), the configuration data and application data stored
on the recovery server can be deleted and recovery flag 340
can be cleared, as any future copies of configuration data and
application data will presumably contain new data to be
re-copied and re-stored on the recovery server from the
given node in the FSS cluster.

It will be appreciated that the data storage and recovery
methodology described herein may make a FSS cluster
resilient to handle failures, and at the same time may prevent
data corruption because of the role of the recovery server.
Therefore, complete data recovery may be achieved in
storage virtualization environments involving multiple FSS
clusters.

An Example Computing Environment

FIG. 4 is a block diagram of a recovery server 175 and/or
master node 105(1) capable of implementing data recovery
in distributed SN storage environments as described above.
Recovery server 175 and/or master node 105(1) broadly
represent any single or multi-processor computing devices
or systems capable of executing computer-readable instruc-
tions. Examples include, without limitation, any one or more
of a variety of devices including workstations, personal
computers, laptops, client-side terminals, servers, distrib-
uted computing systems, handheld devices (e.g., personal
digital assistants and mobile phones), network appliances,
storage controllers (e.g., array controllers, tape drive con-
troller, or hard drive controller), and the like. In their most

US 9,483,367 Bl

15

basic configurations, recovery server 175 and/or master
node 105(1) may include at least one processor 155 and a
memory 150. For example, by executing the software that
implements last failure domain module 170, recovery server
175 becomes a special purpose computing device that is
configured to perform data recovery in a distributed SN
storage environment.

Processor 155 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing instructions. In certain embodiments, proces-
sor 155 may receive instructions from a software application
or module. These instructions may cause processor 155 to
perform the functions of one or more of the embodiments
described and/or illustrated herein. For example, processor
155 may perform and/or be a means for performing all or
some of the operations described herein. Processor 155 may
also perform and/or be a means for performing any other
operations, methods, or processes described and/or illus-
trated herein.

Memory 150 generally represents any type or form of
volatile or non-volatile storage device or medium capable of
storing data and/or other computer-readable instructions.
Examples include, without limitation, random access
memory (RAM), read only memory (ROM), flash memory,
or any other suitable memory device. Although not required,
in certain embodiments, recovery server 175 and master
node 105(1) may both include both a volatile memory unit
and a non-volatile storage device. In one example, program
instructions implementing a data recovery operation may be
loaded into memory 150.

In certain embodiments, recovery server 175 and/or mas-
ter node 105(1) may also include one or more components
or elements in addition to processor 155 and memory 150.
For example, as illustrated in FIG. 4, recovery server 175
and/or master node 105(1) may include a memory controller
420, an Input/Output (I/O) controller 435, and a communi-
cation interface 445, each of which may be interconnected
via a communication infrastructure 405. Communication
infrastructure 405 generally represents any type or form of
infrastructure capable of facilitating communication
between one or more components of a computing device.
Examples of communication infrastructure 405 include,
without limitation, a communication bus (such as an Indus-
try Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI express (PCle), or similar bus) and
a network.

Memory controller 420 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 400. For example, in certain
embodiments memory controller 420 may control commu-
nication between processor 190, memory 185, and I/O
controller 435 via communication infrastructure 405. In
certain embodiments, memory controller 420 may perform
and/or be a means for performing, either alone or in com-
bination with other elements, one or more of the operations
or features described and/or illustrated herein.

1/O controller 435 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments I/O controller 435 may
control or facilitate transfer of data between one or more
elements of recovery server 175 and/or master node 105(1),
such as processor 155, memory 150, communication inter-
face 445, display adapter 415, input interface 425, and
storage interface 440.

10

15

20

25

30

35

40

45

50

55

60

65

16

Communication interface 445 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between recovery server 175,
master node 105(1), and one or more additional devices. For
example, in certain embodiments communication interface
445 may facilitate communication between recovery server
175 and/or master node 105(1) and a private or public
network including additional computing systems. Examples
of communication interface 445 include, without limitation,
a wired network interface (such as a network interface card),
a wireless network interface (such as a wireless network
interface card), a modem, and any other suitable interface. In
at least one embodiment, communication interface 445 may
provide a direct connection to a remote server via a direct
link to a network, such as the Internet. Communication
interface 445 may also indirectly provide such a connection
through, for example, a local area network (such as an
Ethernet network), a personal area network, a telephone or
cable network, a cellular telephone connection, a satellite
data connection, or any other suitable connection.

In certain embodiments, communication interface 445
may also represent a host adapter configured to facilitate
communication between primary node 120A and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Serial Advanced Technology
Attachment (SATA), Serial Attached SCSI (SAS), and exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel interface adapters, Ethernet adapters, or the
like.

Communication interface 445 may also allow recovery
server 175 and/or master node 105(1) to engage in distrib-
uted or remote computing. For example, communication
interface 445 may receive instructions from a remote device
or send instructions to a remote device for execution.

As illustrated in FIG. 4, recovery server 175 and/or master
node 105(1) may also include at least one display device 410
coupled to communication infrastructure 405 via a display
adapter 415. Display device 410 generally represents any
type or form of device capable of visually displaying infor-
mation forwarded by display adapter 415. Similarly, display
adapter 415 generally represents any type or form of device
configured to forward graphics, text, and other data from
communication infrastructure 405 (or from a frame buffer,
as known in the art) for display on display device 410.

As illustrated in FIG. 4, recovery server 175 and/or master
node 105(1) may also include at least one input device 430
coupled to communication infrastructure 405 via an input
interface 425. Input device 430 generally represents any type
or form of input device capable of providing input, either
computer or human generated, to computing system 400.
Examples of input device 430 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 4, master node 105(1) may also
include a storage device 110(1). Storage device 110(1)
generally represents any type or form of storage device or
medium capable of storing data and/or other computer-
readable instructions. For example, storage device 110(1)
may include a magnetic disk drive (e.g., a so-called hard
drive), a floppy disk drive, a magnetic tape drive, an optical
disk drive, a flash drive, or the like. Storage interface 440
generally represents any type or form of interface or device

US 9,483,367 Bl

17

for transferring and/or transmitting data between storage
device 110(1) and other components of master node 105(1).

In certain embodiments, storage device 110(1) may be
configured to read from and/or write to a removable storage
unit configured to store computer software, data, or other
computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage device 110(1) may also include
other similar structures or devices for allowing computer
software, data, or other computer-readable instructions to be
loaded into computing system 400. For example, storage
device 110(1) may be configured to read and write software,
data, or other computer-readable information. Storage
device 110(1) may also be a part of master node 105(1) or
may be a separate device accessed through other interface
systems.

Many other devices or subsystems may be connected to
the computing system illustrated in FIG. 4. Conversely, all
of the components and devices illustrated in FIG. 4 need not
be present to practice the embodiments described and/or
illustrated herein. The devices and subsystems referenced
above may also be interconnected in different ways from that
shown in FIG. 4.

Recovery server 175 and/or master node 105(1) may also
employ any number of software, firmware, and/or hardware
configurations. For example, one or more of the embodi-
ments disclosed herein may be encoded as a computer
program (also referred to as computer software, software
applications, computer-readable instructions, or computer
control logic) on a computer-readable storage medium.
Examples of computer-readable storage media include mag-
netic-storage media (e.g., hard disk drives and floppy disks),
optical-storage media (e.g., CD- or DVD-ROMs), elec-
tronic-storage media (e.g., solid-state drives and flash
media), and the like. Such computer programs can also be
transferred to the computing system illustrated in FIG. 4 for
storage in memory via a network such as the Internet or upon
a carrier medium.

The computer-readable medium containing the computer
program may be loaded into the computing system illus-
trated in FIG. 4. All or a portion of the computer program
stored on the computer-readable medium may then be stored
in memory 150 and/or various portions of storage devices
110(1), 110(2), and/or 110(3). When executed by processor
155, a computer program loaded into recovery server 175
and/or master node 105(1) may cause processor 155 to
perform and/or be a means for performing the functions of
one or more of the embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the
embodiments described and/or illustrated herein may be
implemented in firmware and/or hardware. For example,
recovery server 175 and/or master node 105(1) may be
configured as an application specific integrated circuit
(ASIC) adapted to implement one or more of the embodi-
ments disclosed herein.

An Example Networking Environment

FIG. 5 is a block diagram of a network architecture in
which recovery server 175 and master node 105(1) may be
coupled to network 185. As illustrated in FIG. 5, master
node 105(1) may be attached to recovery server 175 through
network 185. In certain embodiments, network-attached
storage (NAS) devices may be configured to communicate
with storage devices 110(1) and 110(2) using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

10

15

20

25

30

35

40

45

50

55

60

65

18

Master node 105(1), and nodes 105(2) and 105(3) may
also be connected to a network 185. Network 185 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between mul-
tiple computing devices. Network 185 may facilitate com-
munication between master node 105(1), and nodes 105(2)
and 105(3), and recovery server 175. In certain embodi-
ments, and with reference to master node 105(1), a com-
munication interface, such as communication interface 445
in FIG. 4, may be used to provide connectivity between
storage device 110(1) and network 185. It should be noted
that the embodiments described and/or illustrated herein are
not limited to the Internet or any particular network-based
environment.

In at least one embodiment, all or a portion of one or more
of the embodiments disclosed herein may be encoded as a
computer program and loaded onto and executed by nodes
master node 105(1), nodes 105(2)-105(N), storage device
110(1), storage devices 110(2)-110(N), or any combination
thereof. All or a portion of one or more of the embodiments
disclosed herein may also be encoded as a computer pro-
gram, stored in master node 105(1), and/or nodes 105(2)-
105(N), and distributed over network 185.

In some examples, all or a portion of the nodes in FIGS.
1A and 1B may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a
service, platform as a service, infrastructure as a service,
etc.) may be accessible through a web browser or other
remote interface. Various functions described herein may be
provided through a remote desktop environment or any other
cloud-based computing environment.

In addition, one or more of the components described
herein may transform data, physical devices, and/or repre-
sentations of physical devices from one form to another. For
example, a last failure domain module may transform
behavior of a recovery server in order to cause the recovery
server and a last failure domain to communicate with a
storage device and/or another node.

Although the present invention has been described in
connection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

What is claimed is:
1. A method comprising:
determining whether a distributed storage cluster is oper-
ating with a last failure domain, wherein
the last failure domain is an only node of a plurality of
nodes with access to a latest copy of configuration
data and an up-to-date copy of application data; and
in response to a determination that the distributed storage
cluster is operating with the last failure domain,
causing the last failure domain to copy one or more
changed blocks of the up-to-date copy of the appli-
cation data from one or more mirrored volumes to a
recovery server for storage, wherein
the one or more mirrored volumes are stored at a
storage device associated with the last failure
domain.
2. The method of claim 1, comprising
causing a master node to copy the latest copy of the
configuration data to the recovery server, wherein

US 9,483,367 Bl

19

the latest copy of the configuration data is for the
plurality of nodes.
3. The method of claim 2, comprising:
performing a restore operation, wherein
the restore operation is performed using the latest copy
of the configuration data and the one or more
changed blocks of the up-to-date copy of application
data stored at the recovery server, and
the restore operation is performed on one or more
nodes of the plurality of nodes after the one or more
nodes rejoin the distributed storage cluster.
4. The method of claim 3, comprising:
deleting the latest copy of the configuration data and the
one or more changed blocks of the up-to-date copy of
application data from the recovery server after perform-
ing the restore operation.
5. The method of claim 3, wherein
the determination of whether the distributed storage clus-
ter is operating under the last failure domain comprises
determining whether all nodes of the plurality of nodes
other than the last failure domain have failed,
determining whether the storage device coupled to each
node of the plurality nodes has failed, and
determining whether the one or more nodes that rejoin
the distributed storage cluster are performing a syn-
chronization operation.
6. The method of claim 3, wherein
the distributed storage cluster maintains a failure count ID
that indicates whether the restore operation should be
performed from the recovery server or whether the
master node comprises the latest copy of the configu-
ration data and the up-to-date copy of the application
data.
7. The method of claim 2, wherein
the storage device associated with the master node of the
plurality of nodes comprises the up-to-date copy of the
application data, and
the master node and the storage device associated with the
master node comprise the latest copy of the configu-
ration data, wherein
the master node is the last failure domain,
the master node comprises one part of the latest copy of
the configuration data, and
the storage device associated with the master node
comprises an another part of the latest copy of the
configuration data.
8. The method of claim 1, comprising
determining whether the plurality of nodes are part of the
distributed storage cluster.
9. The method of claim 1, wherein
the copying continues until the distributed storage cluster
has more than one failure domain.
10. The method of claim 1, wherein
each node of the plurality of nodes is coupled to a
corresponding of a plurality of storage devices,
one of more of the corresponding of the plurality of
storage devices comprise the one or more mirrored
volumes, and
the plurality of nodes execute an application that gener-
ates the application data.
11. A non-transitory computer readable storage medium
storing program instructions executable to:
determine whether a distributed storage cluster is operat-
ing with a last failure domain,
wherein

20

the last failure domain is an only node of a plurality
of nodes with access to a latest copy of configu-
ration data and an up-to-date copy of application
data; and
5 in response to a determination that the distributed storage
cluster is operating with the last failure domain,
cause the last failure domain to copy one or more
changed blocks of the up-to-date copy of the appli-
cation data from one or more mirrored volumes to a
recovery server for storage, wherein
the one or more mirrored volumes are stored at a
storage device associated with the last failure
domain.
12. The non-transitory computer readable storage medium
of claim 11, comprising:
causing a master node to copy the latest copy of the
configuration data to the recovery server, wherein
the latest copy of the configuration data is for the
plurality of nodes; and
determining whether the plurality of nodes are part of the
distributed storage cluster.
13. The non-transitory computer readable storage medium
of claim 12, comprising:
performing a restore operation, wherein
the restore operation is performed using the latest copy
of the configuration data and the changed blocks of
application data stored at the recovery server, and
the restore operation is performed on one or more
nodes of the plurality of nodes after the one or more
nodes rejoin the distributed storage cluster.
14. The non-transitory computer readable storage medium
of claim 13, wherein
the determination of whether the distributed storage clus-
ter is operating under the last failure domain comprises
determining whether all nodes of the plurality of nodes
other than the last failure domain have failed,
determining whether the storage device coupled to each
node of the plurality nodes has failed, and
determining whether the one or more nodes that rejoin
the distributed storage cluster are performing a syn-
chronization operation.
15. A system comprising:
one or more processors; and
a memory coupled to the one or more processors, wherein
the memory stores program, instructions executable by
the one or more processors to:
determine whether a distributed storage cluster is operat-
ing with a last failure domain,
wherein
the last failure domain is an only node of a plurality
of nodes with access to a latest copy of configu-
ration data and an up-to-date copy of application
data; and
in response to a determination that the distributed storage
cluster is operating with the last failure domain,
cause the last failure domain to copy one or more
changed blocks of the up-to-date copy of the appli-
cation data from one or more mirrored volumes to a
recovery server for storage, wherein
the one or more mirrored volumes are stored at a
storage device associated with the last failure
domain.
16. The system of claim 15, comprising:
performing a restore operation, wherein
the restore operation is performed using the latest copy
of the configuration data and the one or more

20

25

35

40

45

55

60

US 9,483,367 Bl

21

changed blocks of the up-to-date copy of application
data stored at the recovery server, and
the restore operation is performed on one or more
nodes of the plurality of nodes after the one or more
nodes rejoin the distributed storage cluster; and
deleting the latest copy of the configuration data and the
one or more changed blocks of the up-to-date copy of
application data from the recovery server after perform-
ing the restore operation.
17. The system of claim 15, comprising:
causing a master node to copy the latest copy of the
configuration data to the recovery server, wherein
the latest copy of the configuration data is for the
plurality of nodes.
18. The system of claim 17, wherein
the storage device associated with the master node of the
plurality of nodes comprises the up-to-date copy of the
application data, and
the master node and the storage device associated with the
master node comprise the latest copy of the configu-
ration data, wherein
the master node is the last failure domain,

10

15

20

22

the master node comprises one part of the latest copy of
the configuration data, and
the storage device associated with the master node
comprises an another part of the latest copy of the
configuration data.
19. The system of claim 17, wherein
the distributed storage cluster maintains a failure count ID
that indicates whether the restore operation should be
performed from the recovery server or whether the
master node comprises the latest copy of the configu-
ration data and the up-to-date copy of the application
data.
20. The system of claim 15, wherein
each node of the plurality of nodes is coupled to a
corresponding of a plurality of -storage devices,
one of more of the corresponding of the plurality of
storage devices comprise the one or more mirrored
volumes, and
the plurality of nodes execute an application that gener-
ates the application data.

#* #* #* #* #*

